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The PVODE and IDA Algorithms”

Alan C. Hindmarsh

Preface

In October-November 2000, I gave a series of talks, describing in some detail the algo-
rithms in two general-purpose solvers —

e the PVODE solver for systems of ordinary differential equations (ODEs), and
e the IDA solver for systems of differential-algebraic equations (DAEs).
The material was organized into three parts:
e Part A: Overview
e Part B: The PVODE Algorithm

e Part C: The IDA Algorithm

This document consists of the viewgraphs for the corresponding three talks.

Except for the correction of some minor errors, the talk viewgraphs are given here exactly
as presented. Each of the three sets of pages is numbered independently, with page numbers
starting at 1.

Preceding the viewgraphs, on the next four pages is a brief outline of cach of the talks,
and a list of references, some of which are cited in the viewgraphs.

Alan Hindmarsh
Center for Applied Scientific Computing

*This work was performed under the auspices of the U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.



The PVODE and IDA Algorithms - Outline

1. ODE dy/dt = f(t,y) vs DAE F(t,y,dy/dt) = 0; DAE index

2. BDF Methods
a) Basic formulas
b) Symbolic derivation: hD = log E
c) Fixed-step vs fully variable-step vs fixed-leading-coefficient
d) Example: 3 forms of BDF2 '

3. Stiffness and absolute stability
a) stiffness; example
b) absolute stability; local linear approx.; dy/dt = lambda y
c) abs. stability regions; A-stability, etc.
d) BDF absolute stability regions

4. Norms - welighted RMS via tolerances

5. Errors
a) Local Error vs Local Truncation Error vs Global Error

b) LTE = C h~{g+1} y*{{g+1)} + h.o.t.
c¢) Error estimation:

prediction = order—-g explicit analog; correction; )
E(h) = est. local error = C' (predictor - corrector) + h.o.t.
c¢) Error control: v
Set h’ via |[E(h*)|] = 1, E(h’) = (h’'/h)"{g+1} E(h)
6. Solving the implicit system |
G(y.n) = 0, G(ly) = { vy - gamma f(t_n,y) - a.n [ PVODE]
{ F(t_n, v, (y - a_n)/gamma ) [IDA]
Newton: M (delta y) = - G(y),
M approximates G’ (y) = { I - gamma J [PVODE]

{ F .y + ¢ F_y’ [IDA]
Newton-direct: dense or band treatment of M
Newton-Krylov: GMRES with preconditioning
Relaxation w.r.t. gamma
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Part B. The PVODE Algorithm

1. Initial step size
Estimate second derivative; do order 1 error control

2. Storing the history - Nordsieck array = scaled derivatives
Scaling; prediction via Pascal Triangle;
Correcting the history array

3. Interpolating to output times
4. Newton iteration algorithm
a) Modified vs Inexact Newton

b) J/P update strategies; Jacobian-saving
c) Convergence test; rate estimate

5. Local error test
6. Step and order selection
a) Order selection: E(h,k) = est. local error at order k;
set h’ = h’(k) via [|E(h’,k)]|]| = tolerance; find max h’ (k).

b) Heuristics

7. Adjustments on change of step or order

Part C. The IDA Algorithm

1. Initial condition calculation

2. Initial step size
Do "order (0" erxor control

3. Storing the history - modified divided differences
Predicting; Correcting the history array

4. Interpolating to output times
S. Newton iteration algorithm

a) Inexact Newton

b) J/P update strategies

c) Convergence test; rate estimate

6. Local error test - on truncation and interpolation errors
7. Order/step selection

a) Order selection - Taylor series terms

b) Step selection - via LTE

c) Heuristics

8. Inequality constraints
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The PVODE and IDA Algorithms

Alan C. Hindmarsh

Part A: Overview

1. IVPs - ODEs vs DAEs

Backward Differentiation Formulas
Stiffness and absolute stability
Norms - weighted RMS via tolerances

Errors - local error; error control

S Ct o W N

Solving the implicit system - Newton variants



1. Initial Value Problems

ODE systems:
y=dy/dt = f(t,y), ylto)given, y <& RY

DAE systems:
F(t7 Y, y) =( ) y(t()) and y<t0) giVEH

Index of DAE systems:

F(t,y,y) = 01s index-0 if 0F/0y is nonsingular
(can solve for y, in principle).

P . | flt u v, ) .
F(t,y,y) = 0 is index-1 if F' = ( ot u, v) with
Of /0u and Og/0v both square and nonsingular
(can solve g = 0 for v, substitute, solve f = 0 for u).

(There are more general forms of index-1 systems.)



2. Backward Differentiation Formulas

PVODE and IDA use BDF methods. With PVODE, user
can select Adams methods for nonstiff problems.

Basic formulas. Discrete values are ¢, and y, ~ y(t,).
Step sizeis h =t, — t,_1.

Backward Euler (BE): y,, = yn—1 + hin
Fixed-step BDF of order ¢ (BDFq):

Yo = -é it s + hfBin  (BDF1 = BE)
Coefficients «;, 8y depend only on order q.

One of many Linear Multistep Formulas (Methods).

“BDF” because 1t differentiates y with backward values:
¥, = (linear combination of Yy, Yn_1, Yn_2,-..)

Interpretation for y = f: Solve for g, in
q
Yn = El QYp—i T hﬁ()f(tm yn) .

Interpretation for F(t,y,y) = 0: Solve for y, in

q
Yn — Zj=1 OYn—;

= 0.
hBo

F (tn,yn,



Symbolic operator derivation.
For any sequence {x,}, define operators

Ex, = 41 (increment)
Ax, = Tp,1 — x, (forward difference)
Vi, =2, — x, 1 (backward difference)

Also define 1 = identity operator. Note inverse and other
relations, and develop an algebra of operators:

Elz,=z,41, AN=E—1, V=1—-E"1,
A sequence may or may not be the set of discrete values
of a smooth function of £. When it 1s, we can define a
differentiation operator, D f, = f(t,).
Infinite Taylor series for f:

. 2..
Bfy = fuor= fltat W)= fut hfyt " f ..
212

h2D2
= (1+hD + 5 + . ) fa or B = e’

Now from 1 —V = E71 get E = (1-V)™!,

1 1
hD =log(E) = log[l/(1 - V)] =V + —2~V2 1 §v3 +...
Applied to y(t):

1 1
Wi = Vg + 5V g0 + §V3yn + ..
For BDFq, truncate this series at V¢ term.

4



How to vary the stepsizes? Three ways:

(1) Use fixed-step BDF but interpolate at a spacing equal
to the new stepsize A’

[This is the method in LSODE and its variants.]
Behavior can be unstable if step changes are frequent.

(2) Use fully variable-step form of BDF:

q .
Yn — _;1 Cp iYn—i -+ hnﬁn,oyn .

i l’l l l]nq hfl '

Coefficients o, i, Bn.0 depend on stepsizes h, = t, —t,_1,
Pty hyger. h =maz{hy, ... hy_ge1}, then the

coefficients are uniquely determined by:

(1/Bn)ly(tn) = X ni(ta-] = hugi(ta) + O(AT*) .

| This is the method in EPISODE and its variants.|
Disadvantage: variation of hA,S, ¢ makes Newton matrix
hard to keep current.



(3) Use “fixed-leading coefficient” form of BDF.

A compromise. The choice in PVODE and IDA.
Formula has fixed-step value of 8,0 = o =1/(z4_; 771
but at the cost of an extra term 5, 19, _1:

q . .
Yn — 'Zl Oy iYn—i T hnBOyn + hnﬁn,lyn—l .
1=
Coefficient [3, ; vanishes when stepsizes are equal.

Coefficients are defined via interpolating polynomials:
Given ¥,—1,...,Yn—g, Yn—1, define the predictor polyno-

mial w?(t), of degree < g, by

wp(tn—j) = Yn—y (] =1.. Q) 3 wp(tn—l) — yn—l :
Corrector polynomial w®(t) is defined in terms of w?(t)
and the unknown value y,, by:

W(ln) = Yn , Wty — Jhn) = P(t, — jhy) (1 =1..q) .
Then the BDF is the equation g, = w(t,).

More constructively, get predicted values y, ) = w?(t,)
and y,(0) = wP(t,), and then build w(t) as

W(t) = WH(t) + o) (Y — yage)) Where
c(tn —hn) =...=cltn —qhy) =0, c(t,) =1.
Then the BDF is
hnln = hnyn(()) + hnc(tn)(yn - yn(O)) y
where h,¢(t,) = 1/5,.



Example: BDF2
(1) Fixed-step:

, 1
hyn = Vyn + é‘van = Yn—Yn—11 (yn - 2%-1 + %—2)/2

4 1 2

n— SYn—1 — FTYn— _h.n
Y 39 1 3y 2+3 Y

(2) Variable-step:
With p = hn/hn—la

Yn (0 + 1) yn_1 — Pyn—2 + (p + Dhaty)

T2+l
(3) Fixed-leading-coefficient:
With p = h,,/h,_1,

2 2
0 0 2 (p—l) .
n — 1 1 Yn—1 — T Yn— _hn n_ | o hn n—
Y (+3)y 1 Sy 2+3 Yy 3 Yn—1



p

Y

3. Stiffness and Absolute Stability

Stiffness.

Characterized by presence of a strongly damped mode.
In a linear approximation, there is a mode e* with
Re(\) << 0, such that the corresponding time constant
T = —1/Re(\) is << the ¢ scale of interest in solution.
Problem is not (yet) stiff if y(¢) is changing on scale of 7.

Simple example:
y=2t+10°(" —y), t€[0,1], y(0) given .

Here y = 2 + ype V7, 7 = 107% Beyond t = 107
(say), solution time scale is ~ 1. But damped mode with
time constant 7 is still present, so problem is stiff there.
Stepsizes ~ 7 if the wrong method is used.

Graphically: Among all the particular solutions, a few
are smooth (in quasi-equilibrium), but most are strongly
damped toward a smooth solution. In contrast, the solu-
tions for a nonstiff problem are more nearly parallel.

Sty bE
nonste +F
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Absolute Stability (for ODEs).

Look at how a perturbation in initial conditions generates
a perturbation in the solution: y(t) — y(t) + w(t).

Fory = f(t,y), get
w= f(t,y+w)— f(t,y) = J(t)w(t) , where
J(t) = (01 /0y)(L, y(?)) -

In a local linear approximation, look at simply w = Jw
with J constant.

Diagonalize J. Some nonsingular matrix transforms J
into a diagonal matrix with eigenvalues A.

The true solution of w = Jw 1s a linear combination of
exponentials e.

Using linearity of the BDF, the BDF solution is the same
linear combination of the BDF solutions of y = A\y.

Define the Absolute Stability Region of any ODE method
as the set of AA for which the method is stable, i.e.
damped, for y = Ay at stepsize h.

So you can judge the stability of any given method on
a given class of problems simply from the Absolute Sta-
bility Region of the method combined with the spectral
properties of the problems.



Method is “A-Stable” if A.S.R. includes the left half-plane
{Re(z) < 0}; i.e. whenever the ODE y = Ay 1s stable,
so 18 1ts numerical solution.

True for BDF1 = BE and BDF2. Dahlquist proved there
is no A-stable Linear Multistep Method of order > 3.

o

Re (WM <0

L~ L

7

All the BDFs up to order 6 are “A(a)-Stable”: A.S.R.
includes a sector —a < arg(—hA) < aforsome o < 7/2.

P
A

All the BDFs up to order 6 are “Stiffly Stable”: A.S.R.
includes a half-plane left of some d < 0, and method is
accurate in an adjoining rectangle centered at the origin.

Zii s

CLCC

RS
/////\ R
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BDF Absolute Stability Regions:
Method is stable outside the closed curve shown.

BDF1 = BE:  {|hA — 1] > 1} (A-stable)
BDEF2 is also A-stable

300+

1.001H

-2.00

-1.00( 1

-3.00+

Order 6 is close to failing to be A(a)-Stable or stiffly
stable, so is excluded in the BDF solvers.
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4. Norms
The user must supply tolerances,

rtol = relative tolerance (scalar)

atol = absolute tolerance (scalar or vector)
These define weights for the solution vector y:

w' = rtol |y'] 4+ atol’ (i =1...N)

To control errors in y* relative to w*, use a weighted norm.

To eliminate bias when expanding problem size (as in
mesh refinement), we use a root-mean-square norm.

So all error/convergence tests use a Weighted RMS norm
folhwnss = [ S w]
on any error vector v.
Roughly (ignoring effects of RMS), ||v|| < 1 means that
[v'| < w' for all ¢
and roughly that
cither |v'|/|y"| < rtol or |v'| < atol’

S0 a unit vector in this norm is really a small vector.

12



5. Errors
Local errors.

Local Error = error committed on one step, taken with
exact solution values for past values.

Local Truncation Error = residual of the Linear Multistep
Formula when an exact solution is inserted. (Depends on
how one normalizes the LMF)

LE and LTE are different, but close. Both are O(h?™1)
for a method of order ¢. With suitable normalization,
LE = LTE +O(h"?).

Global Error = error in y, (after n steps) from exact
mmitial value g, reflecting cumulative effect of local errors.
Convergence theorems show Global Error = O(h?), under
suitable conditions.

For any LMF, LTE = C,h9*y+D(t,) + O(hi*2), where
C 1s a computable function of ¢ and (in variable-step
cases) of the past ¢ stepsizes h;.

13



Error estimation.

Predict y, as y,0) = w(t,), the explicit analog of BDF"

q .
Yn(0) = El Oéﬁ,z'yn—z' + hy, 5,1%—1

Similar asymptotic analysis of v,, — Yn(0) glves
Yn = Un(o) = Cuh Tyl (t,) + O(hI*?)
for another known constant C,,.
So within O(h?*+2),
(LTE in y,) = C,h7 1y (g, )

~/
~

(‘g—:) (Yn — yn(o)) -

So we define the Estimated Local Truncaj:ion Error as
ELTE = C) (y,, — yn(O)); with C) = C,,/C,.

14



Error control.

Given F/(h) = ELTE for the tentative step taken at order
q and stepsize h, we accept the step if [[E'(h)]| < 1, and
redo the step otherwise.

In either case, we want a new stepsize h' for which the
current or next step will succeed.

Asymptotic formulas imply E(R/) ~ (h'/R)TE(h),

ignoring variation in C,.

With this approximation, the value of A’ that makes
|E(h)]| =1 is given by

B /RTHER)] = 1

or

B = h/| E(R)Y

We 1nsert a heuristic factor < 1 into this formula to
compensate for estimation errors etc.

Order selection.

Under certain conditions, we choose a new order ¢’ as well

as a new step size. This is based on similar ideas, is done
quite differently for PVODE and IDA.

15



6. Solving the Implicit System
Nonlinear system.

At every step, a nonlinear system G(y,) = 0 must be
solved for the new vector v,,.

Write the BDF as y, = a,, + Y¥n, v = h3y. Then
For PVODE: G(y) =y — vf(tn, y) — a,.
For IDA: Gly) = F(tn,y, (y —an)/v).

Newton iteration.
The initial guess is the predictor value Yn(0)-

The iteration is M [y, (mi1) = Ynm)] = —G(Yn(m))
with Newton matrix M ~ G'(y) at some nearby value y.

For PVODE: G'(y) =1 —~J, J=09f/0y.
For IDA:  G'(y) = 0F/0y + a0F /0y, a=1/y.

Newton-Direct solution:
Dense or band LU factorization of M backsolve Mz = b.

Newton-Krylov solution:

Solve Mx = b by preconditioned GMRES.
Precondition on left or right in PVODE, left only in IDA.

16



Linear system relaxation (Newton-dir-t case).

Newton matrix used is either

M=I1-5J or M =030F/0y+ (1/%)0F /0y
with 4 = the value of hfy when M was last evaluated.

Even if the rest of M has not changed, ¥ # ~ can degrade
convergence.

We help by doing relaxation: use Ay = —cM G instead
of Ay = —M '@, with scalar ¢. What ¢?

Consider a linear ODE system, y = Jy (F = y — Jy)
with J constant. Then either
G=M=1—-~J, M=1-~J or
G=M=~y1'1T-J, M=75'-7].
In either case, the error at each iteration is reduced by

the error matrix & = I — cM "M, and convergence rate
is the spectral radius p(£).

Observe that for A = an eigenvalue of J, the correspond-
ing eigenvalue of E' is
1 — -
ezl—c( 7)\) or ezl—c(iy A :
1 — A\ L — A
We expect Re(A) < 0 but otherwise Sp(J) is unknown.

Choosing ¢ to minimize max{ |e| : Re(A) < 0} leads to
2 2

= — Oor Cc= — .
1+v/5 1+5/v

C

17



Shorthand notation for the step algorithm:
P = prediction
E = evaluation of f or F

C = correction

FEach step is: P (E C)™.

Stopping test.

Basis for error control is valid only if y, 18 an accurate
solution of the implicit equation. So stopping test must
(try to) insure that iteration error in final y,,) has a
relatively small effect on the local error test quantity.
[.e. tolerances for Newton stopping and for local error are
strongly related.

Test 1s on “yn(m—i—l) - yn(m)”> not on ”G(yn(m—l—l))n
(No final E.) Reasons:

(a) G magnifies the error in stiff ODE case;
(b) ||G|| is nonsense in DAFE case; weights not valid.

18



The PVODE and IDA Algorithms

Alan C. Hindmarsh

Part B: PVODE

1. Initial step size

Storing the history - Nordsieck array
Interpolating to output times
Newton iteration algorithm

Local error test

Step and order selection

Adjustments on change of step or order

Example PVODE run
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0. Introduction

PVODE solves the initial value problem

y=f(t,y), yeRY, y(ty) given .

Methods available are:
variable-order (1-12) variable-step Adams-Moulton,
var.-order (1-5) var.-step (fixed-leading-coeff.) BDF
For stiff problems, use BDF'.

Discrete values are ¢, and y, ~ y(t,), with step sizes
hy, =1, —t,_1.

In terms of predicted values Yn(0) and Yy(g), the BDF of
order ¢ has the form

Yn — Yn(0) = hnﬁ()(yn - yn(O)) )
where By = 1/(=9_11/7).

Desirable absolute stability properties of BDF methods
for stiff problems comes from single (implicit) ¥ term in
linear multistep formula y, = =9_; ajy,_; + hBoin

Where the algorithm is method-specific, only the BDF
methods are covered here.



1. The Initial Step Size

First step will be with BDF1 = Backward Fuler.
For this step, LTE= $h*§i(to) + O(h?).
We want an h that roughly solves ||LTE||lwrus =1, or

RPNt /2=1 .

Must estimate gjo = y(to), knowing yo, vo = f(to, ¥o).
For a given guess h, estimate

o = [f(to+h, yo + ko) — go] /1.
Now iterate.

To get started, use bounds for |h| based on initial time %,
and first requested output time ¢,,;.

Lower bound i1s

hy = 100 - (unit roundoff) - max{|to|, |tout|} -

Upper bound is hy = 0.1|te — o], possibly adjusted
downward to ensure that

holvsl < 0.1|yg| + atol’ (all 7) .

Start iteration with E: Vhrhy stgn(tew — to)-
Stop when 1/2 < h/h < 2 (good enough, since the error
control in first step may reset h).

3



2. The Nordsieck History Array

Recall: Data {yn, Yn, Yn—1, - - -, Yn—q+1} defines a unique
polynomial w?(¢) of degree < q |earlier denoted w?(¢)].

The Nordsieck array is defined as the N x (¢ + 1) array
of scaled derivatives of w = w? at t,:

- Rh?. h?
Zn = [yna hyna jyna SR 5’—:%(1(])} ) yT(Lk) = w(k)(tn) )

where h = current (tentative) step size.

Prediction of z, from z,_1:

Zn(0) = 2n-14q ,  Agq = order (g + 1) Pascal Triangle.

1
11
121

A5 = 133 1
146 41
15101051

Done 1n place with repeated additions, not multiplies:
fork=1.q{forj=q.k{zZ7 ' 227+ 1},

where 27 = column j of z, 1 (j =0...q).



Correcting the history array.

The array z,() represents predictor polynomial wh_1(t)
via scaled derivatives at t,, with step size h = h,,.

After computing and accepting v, in order to start the
next step, we must represent w?(t), which interpolates
the data set yn, Un, . - -, Yn+1-¢. We do this by looking at
A(t) = wP(t) — wi,_1(t), then adjusting the columns of
Zn(0) by the scaled derivatives (h7/j1)AU)(%,).

Recall that the BDF is
h(yn — Qn(0)> = —ap(Yn — yn(O)) :

where —ap = 7., 1/7. (The reason for this notation is
that the BDF 1s often written in the alternate form

q 1 .
Xy + A3 By =0, fo=1)

From the various interpolation conditions,
Altn-1) = Altas) = - Alts1g) =0,
Altn) = Yn = Yno) = Ay
Altn) = G — Yno) = (—ao/h) A, .

From its zeros and values at ¢,,, we can write

t— 1,
A(t) =112 o
() 7= (tn—tny

) A+ (¢ — t)ud]

5



for some scalar u. We have

AW = (5 7 M e - wua,

j=1t — tTL~j by — n—j
EETR AR A
- (H?zi = ) JT7AW
by — tn;

. ~1 h
hA(t,) = (qZ ) A+ hul, = (0 + hu)A, .

7=1 tn — Zfn—j

So (o + hu)A, = —aA, implies = —(0 + ag)/h.
Define dimensionless quantities
and
% q g1
E=h/p=1/(-—0)=1/ (%1/] - X 1/@) .

At the same time, it helps to change from ¢ to the dimen-
sionless variable

Then
t — tn—j tn - tn—j -+ hz
T he, /&

and 1+ (t —t,)p=1+2x/£"




We get
A(t) = Ax)A,

where A(z) is the scalar polynomial
Az) = |9=5(1 + T/&)| (L +z/€) .
Now the scaled derivatives of A(t) at ¢, are just the
Taylor coefficients of A(x)A,, at z = 0:
A AW
h .( ):: KO%An:ZKﬂSna

J! J!

Az) = %@xi |

We can find the coefficients ¢; of this polynomial easily.

Denoting z, = [z, 2}, ..., 29], the correction to the his-

nI=n’

tory array is simply
z = zf;(o) +46;A, (3=0,...,q9) or
Zn = Zpo) tAn b, L= (by,..., 4,) .

Note that

O="S1/g+1/e = 1/ =1/p .
7=1 7=1

~]



3. Interpolating to Output Times

Suppose the user requests the solution at t = ¢,,;, which
was just reached: t,_1 < tour < t, or t,—1 > touwr > t,.
As the computed approximation to y(fy), we return to
the user

Yout = w(tout)

using w = wh.

As given by Taylor series based at ¢,,,

(tout B tn>qy7gq+1) .

Yout = Yn T (tout — tn>yn + ...+ Q’

Given the Nordsieck array z,, with columns 2/,
q tout - tn J 1
out = > () Z] .
Yout - 5

We also provide, on request, solution derivatives

¢ (7 ((tour — ta)’ %) .
ygu% ( )( out) g ('/]C) ( ' h]. ) 27

for 1 <k <q.

In particular, this gives y(t,u) cheaply and accurately.
Evaluating f(fout, Yout) 1S probably more expensive, and
stiffness makes it less accurate.



4. The Newton Iteration Algorithm

Recall we arc solving G(y,,) = 0 for y,. where
Gly) =y =7/ (tn,y) — an and y = Ay = b/,

Newton iteration is MAy = —G(yy(m)), where M is
some approximation to G'(y) = I —~J and J = 9f /oy.

PVODE (together with its serial twin CVODE) does two
flavors of Newton 1teration:

(a) Modified Newton in direct cases:
M fixed (usually out of date):;
linear residual ~ 0 via LU method;
relaxation w.r.t. v # v in M.

(b) Inexact Newton in Krylov case:
M current, using matrix-free product Jov:
precondition (left or right) with P ~ M;
linear residual nonzero but controlled.

In any case, the initial guess is
Yn(0) = Wh_1(tn) = column 0 of z,() ,
where wi,_; represents the data at end of step n — 1.

If a re-evaluation of M or P is done during step n, it is
done at (5, Yn(0)), to maximize its effectiveness.



Jacobian/Preconditioner strategies.

The Newton matrix M = I —~J (direct cases) and pre-
conditioner P &~ M (Krylov case) are usually expensive.
Balance between evaluation/preprocessing the matrix fre-
quently (high cost) and infrequently (slow convergence).

We update M or P if:
* starting the problem (n = 1)

* > 20 steps have been taken since last update

* v/7 — 1| > .3 where v = 7’1&81; update
* just had a non-fatal convergence failure on this step
* just had an error test failure on this step

On an update of M or P, we may re-evaluate J (direct
cases) or instruct user to re-evaluate Jacobian data in P
(Krylov case). Or we may use a saved copy of J for M,
or instruct user to use saved Jacobian data to form P.
On an update of M or P, we also re-evaluate if:

* starting the problem

* > 50 steps have been taken since the last evaluation
* just had conv. failure with J old and |/ — 1] < .2

* just had a convergence failure forcing h reduction

10



Convergence test.

The final computed value g, will have to satisfy a local
error test ||y — Yn(o)|| < €2p. We want to insure that the
iteration error Yn — Yn(m) 18 small relative to epp:

|iteration error in g,y || < 0.lerg .
For this, estimate linear convergence rate constant R:
We initialize R to 1; reset R = 1 when M or P is updated.

After computing a correction d,, = Ypn(m) — Yn(m—1), We
update R ifm > 1 as

R < max{0.3R, |0 /[ 0m_1l} -
Now

Herror n yn(m)H — Hyn — yn(m)” ~ llyn(m+1) - yn(m)H

R”yn(m) — yn(m~1)” — RH(Sm” :

Q

So the convergence test is
R||,]| < 0.1erp .

If convergence is superlinear (possible in Newton-Krylov
case), then the error in g, is even smaller.

We allow at most 3 Newton iterations, and declare the
iteration diverged if any ||0,,]|/||0m-1]] > 2.

If convergence fails with J or P current, cut h <— h/4.

11



5. Local Error Test

For BDFq, at current step size h = h,,,
Local Truncation Error = C’hQ+1y(Q+l)(tn) + O(h7t?)

for some C, where the ratios h;/h are assumed bounded
(above and away from zero). To express C, recall
q :
gj — (tn _ tn—j)/h , Qo = —jgl 1/] ;
and also define

A q
Ckn,() = — Z 1/5] .
J=1

Then . A
(II1&5) (o + 1 — anyp)

ap(g +1)!

O —

There is a similar asympotic formula for the LTE of the
predictor formula for y, ), with coefficient

(IT3¢;)
(g+ 1)1
In terms of A, = yn — Yn(0), the LTE for corrector is
LTE = C"(yn — Yn()) + O(hT™?) , where
r_ C _ (Ck() + 1 — één,o)
C’p -+ QO!()C 050[1 -+ Q(CYQ +1— CA¥n70)] .

o =

For derivation, see Jackson & Sacks-Davis [10].

12



The local error test is:

||estimated LTE| <1, or
1AL =y = Yn)ll < 1/IC"| = €1k -
If test passes, go on to correction Zn(0) = Zn
If test fails,
(a) restore z,_1 from z, () by repeated subtractions
(b) reset step size to A’ = solution of
(W /R)HAn]l = €15 /6

(1/6 = safety factor, to account for deviations from
asymptotic behavior)

(c) rescale z,_1: z)_q < (R /h)iZ]_,
(d) retry the step (predict, correct, etc.)

It error test fails repeatedly (7 times) or |h| reaches a
user-supplied minimum, give up.

After 3 error test failures, we force an order reduction if
g > 1, or restart from scratch if ¢ = 1.

The ratio A'/h is limited (above) to .2 after 2 error test
failures, and to .1 after 3 failures.

13



6. Step and Order Selection

Basic idea: Pick the order such that the polynomial of
that degree best fits the discrete data on the given ¢ mesh.

First rule: Keep the current ¢ and h if the current step
had either a convergence failure or an error test failure.

Step selection at current order.

Since the error test ||Ay|| < erp passed,
(h’/h)qHHAn“ = €LE

may define a larger step size. With safety factor, use

1
g+1

:77(]

€LE
611 A]
as the tentative step size ratio at order g.

b [h =

Order selection timing.

We consider a change of order only after taking g+ 1 steps
at order ¢: a heuristic with partial theoretical support.
In that case, consider orders ¢ = ¢ — 1 (if ¢ > 1) and
g =q+1 (iff ¢ <5).

In a future version of PVODE: Following any step with
q > 3, force a reduction to order ¢ — 1 it A is limited by
the boundary of the Absolute Stability Region.

14



Consider order g — 1.

The Local Truncation Error at order ¢/ = ¢ — 1 1s
LTE,_, = C, 1h%\9(t,) + O(h*™) .

By a derivation similar to that for the order g error test,

(I117¢5)[o(g — 1) + 1 — du,0(g — 1)]
(g —1) ¢! '

Cyr =

Here hiyl9(t,) is easily estimated as ¢!zZ. So
est. LTE,_; = C,_1q'2] .
We set a tentative new step size as before:
(h'/h)%|est. LTE, 1]| = 1/6 , or

1

h'[h =
/ 6]|est.LTE,_1]]

q
= Tlg—1 -

Consider order g + 1.
The Local Truncation Error at order ¢ = ¢ + 1 is
LTEq+1 _ Cq+1hq+2y(q+2)(tn) 4+ O(hq+3) ’

M) [ao(g + 1) + 1 — dnolg + 1)]
ag(q+1) (g +2)! '

Cq+1 — (

15



We estimate h?+2y(02)(t,)) using

An =Yy — yn(O) ~ OnhQ+ly(Q+1)(tn) and

ANpo1 = Ypo1 — Yn—1(0) ~ _n—lh%jy(qﬂ)(tn—ﬁ :

Even though the justification appears shaky, we take
1 1

YT (tn) o o

(We saved A,y and C,_; at end of step n — 1 if the
waiting period was about to end.)

Insert into LTE equation to get est.LTE,, ;.

Use a smaller safety factor = 1/10 for tentative h':

(h/hn—l)q+1An—l .

1
q+2
= TNg+1 -

1
10{|est.LTE, 44|

b /h = [

Order selection.
We want the next step size to be as large as possible:

N = max{nq—la ULe 77q+1} .
Set ¢’ = q or ¢ £ 1 accordingly, and b’ = nh.

Two final rules:
Don’t bother changing q or h if n < 1.5.
Limit A'/h to 10* on step 1, and to 10 otherwise.

16



7. Adjustments on Change of Step or Order

Changes to h, g, and z, decided on at end of step n are
made at start of step n + 1, in order not interfere with
calculation of interpolated output values.

Actions when ¢ # ¢:
Adjust z, to reflect new set of interpolated data.
Additional actions whenever h' # h:

Rescale the 27 by np/ (j=1..q),set h=1', ¢ =¢.

Adjustment for ¢’ = g — 1.
Array z, represents w(t) = wP(t), of degree g, which
interpolates Un, Yn, Un—1, -5 Yn—q+1.

We need an array z, representing w(t), of degree ¢ — 1,
which interpolates ¥n, Yn, YUn—1, -, Yn—g+2-

As before, do this by determining the difference poly-
nomial, A(t) = w(t) — @w(t) (of degree q). We have
A(tn) - A<tn—l) s T A(tn—q+2) =0= A(tn)
and the coeflicient of t7 in A(t) is the same as for w(?),
namely y\9 /gl = 29/h?. This implies

At) = (8= ta)? [T — )| 7

17



In terms of x = (¢t — t,)/h and &; = (¢, — tn—j)/h,

A(t) = (ha)? [ (b — oy + b)) 22

= 27 NG + )| =5 = d(@)22 .
We compute the coefficients d; of d(x) = :1:21_[%_2(53- +x),

then adjust z, (in place) by
=2 —diz! (j=2,...,q—1).

Adjustment for ¢ = q¢ + 1.

We need an array z, representing w(t), of degree q + 1,
which interpolates ¥, Yn, Yn—1, ---, Yn—q-
Determine A = w — w (of degree g + 1). We have

Alt,) = Alty1) ... = A(th—g+1) = 0= A(L,)
and A(t,_y) = Yn—q — W(tn—q) = An_y- Therefore

t—t, Vo it =t
n—q n n—q n—j

Setting ¢ = t,, + hx, we have

hx 2 t. —t._.+ hz
Alt) = |1 P
() (t tn) [ 3‘1( t )

n—q — n—q = tn—j

2
[éq) =g - &,

18
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Now recall the polynomial A(t) = wP(t) — wh_(t) we
constructed to correct Zn(0) O z,. We have

A(tn—Q> — wﬁ(tn-q) — Yn—q = _An—q :
From the construction A(t) = A(z)A,, A, = Yn = Yn(0).
Evaluating at ¢ = t,,,, where 2 = (t,_, — t,)/h = =&,
An—q = _A(tn—q) — _A(_gq)An
* -1
= (1 =&/ 51 - &,/¢)] A

— (1/§ . 1/§q) [ (5]1 §Q)J An .
lé.]
Substituting, we get
21749~ /& =1 q
A = i n) [ V8) g,
- d(aj) d A, .

We compute the coefficients d; of the polynomial d(z),
compute the constant d, and then adjust z, by

z) = 2] + didA, J=2,...,q+1).

Here 2™ = 0, so this creates a new column g + 1 for the
history array.

Reterence: Brown notes [2]
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8. Example PVODE Run

Ozone model: two-species reaction-advection-diffusion in
2D with diurnal kinetics; time span = 24 hours.
(See PVODE User Document [6]).

Solution uses BDF + GMRES + left preconditioning:
P is block-diagonal with 2x2 blocks (no spatial coupling).

Rough history of order g and step size h:

O 0.045 ... 0.35 oo (11-56s)... 12.4h ... 24h
G123 4.5.4.3.2 (35).5..5
h: 0.4ms ... Tms ..... 0.03s .......... (2-131s) .... (6-14min)

Total time steps NST = 467

Total nonlinear iters. NNI = 586. Average = 1.255/step
Total linear iters. NLI = 588. Average = 1.003/Newton
Total P setups NSETUPS = 72. Average = 6.5 steps/setup
Total P evaluations NPE = 8. Average = 58.4 steps/eval.
Total error test failures = 23

Total Newton convergence failures = 0

Total Krylov convergence failures = 0
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0. Introduction

IDA[ACH, Taylor| evolved from
DASPK |Brown, ACH, Petzold|, a variant of
DASSL [Petzold].

Change of notation: F(t,y,¢') =0, v =dy/dt ,

y € RY.

Discrete values are ¢, and y, ~ y(t,), with step sizes
Ry =t, — th_1.

In terms of predicted values () and yg(O), the fixed-
leading-coefficient BDF of order & has the form

(Y — Yn(o)) + Yy — Yno) = 0,

where

Order k varies between 1 and 5.

[\



1. Initial Condition Calculation

For the DAE system F(t,y,y') = 0, the user is to
supply to and initial condition vectors yy and y). But it
may be difficult or impossible to supply these consistent
with the DAE system.

Problem 1. Suppose F' = 0 corresponds to an ODE sys-
tem with constraints, also called a “semi-explicit index-1"
system:

u' = f(t,u,v), g(t,u,v)=0 (9g/0v nonsingular) .
User may know ug = u(ty), but not have a consistent .

Problem 2. For general F', suppose ¥ is given but
1s unknown, and 0F'/dy is nonsingular.

In both cases, IDA can help the user out.

Initialization Problem 1.

Allowing v’ to be implicit, take the more general form:
F — f(t7 u7v7u/>
9(t, u,v)

with df/0u" and dg/0v both square and nonsingular.
IDA actually accepts a more general class of problems:
the differential components u and algebraic components
v can be permuted, and the constraints may be implicit.
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Because we also need uy to start the integration, define
'U/E) f(tO,UO,UO,U6>)
T = = .
( Yo ) ’ ¢<$> ( g(t()) U, UO)
Then we want to solve ¢(x) = 0 for . The Jacobian,
/ . . fu’ fv
i'a) = 00/on = [T 1]
1s nonsingular (subscripts denote differentiation).

We want to do Newton iteration, but do not want to set
up any new machinery, beyond what is involved for the
mmtegration of the DAE system. The integration involves
solving Newton correction systems JAy = —F. with

J=0F/0y + adF/0y , a=—ay/h.
The user is either supplying J or letting IDA generate J

by difference quotients (direct cases), or is supplying and
solving a preconditioner P ~ J (Krylov case).

For the case of Problem 1,

J — (fu+afu’ fv) .
Gu 9u

Now we play a trick. Artificially set h, and o = 1/h,
and approximate ¢'(x) with a scaled form of J: Let

_ (R, O i oga_ (Jwt e fu
S:(O Iv), J:JS( ha. gv).

Note that as h — 0, J — ¢'.
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Given that we can realize the operator J !, we can
realize J 1 = S71J~1 an approximate inverse of ¢'.
We must pick h small enough to make J ~ ¢’ but not so
small that J is too badly conditioned. |

The basic IC Calculation algorithm:
1. Pick an appropriate small h; set o« = 1/h.

2. Form J, or have user set up preconditioner P.

/
3. Set r = —F(tg, Yo, y,) at current guess x = (ZO )
0
4. Solve Jp = r by direct or precond. Krylov solve.
5. Set Az = S 'p (= J 'r)and x + = + Ax.
6. Loop to Step 3 until ||p|| small.
7

If converging slowly, update J or P and continue
from Step 3 with current z.

8. If diverging, reduce h and restart with original x.

Impact on user: must input integer vector ID identifying
differential components u and algebraic components v.

Fxtends to index-0 case: solve F'(to,yo,y,) = 0 for g
(no v or g). But the convergence test on ||p|| must be
rescaled to remove 1ts artificial near-proportionality to h.



Initialization Problem 2.
Here we simply want to solve ¢(yy) = F(to, yo, y,) = 0.

The Jacobian ¢' = F), is simply the value of the system
Jacobian J with o = 0. So we use the same algorithm as
in Problem 1, but pass o = 0 at each point where J or
P is evaluated and preprocessed (no h, hence no Step 8).

In both cases, the actual algorithm is more complicated.
See [5]. The main complication is a linesearch backtrack-
ing algorithm to improve global convergence. It guar-
antees a reduction of ||¢||*> at each Newton step, with
relaxation: x + xr + AAx.



2. The Initial Step Size

PVODE uses an algorithm based on the Local Trunca-
tion Error of the order 1 method: estimate g} and solve
W21yt /2 for .

This is not feasible in IDA; F' = 0 provides no way to
get 3" analogous to PVODE’s differencing of v/ = f.

IDA resorts to using the LTE of the “order 0” method,
Yn+1 = Yn. For the order O step 1 = 19, the leading term
of the LTE is hyy, and we have y. So as the tentative
value of A take the solution of ||hy)|| = 1.

Adjustments to this choice:
add a safety factor;
restrict to a fraction of first output interval |t,,; — ]
attach the proper sign.

The result 1s:
1

230l

h = Sz'gn(tout — to) min .OOl’ttout — tol,



3. Storing the History
Classical divided differences of {y,}:

Wi = s [y poa] = I
ny — n o T n— - tn . tn_l ?
[yTw Yn—1, .., yn—k} =
[yna Yn—1, -+, yn—k—i—l] _ [yn—la Yn—2, -, yn—k]
by — bn—k .
For a smooth y(t),
Yo Yn1s ooy Ynok) =y W)/, E € [tagtn]

Modified divided differences:

First define the ¢ differences (7 =1,... k)
wj(n) = tn — tn_]‘ — hn + ...+ hn—H—j

[Y1(n) = hy
For 7 =0,...,k, the modified divided differences are:
¢O(n) = Yn ,

¢$1(n) = %(n)[iyn, Yn—1] = Un — Yn—1 ,
¢i(n) = i(n) - ()Y, -, Yoyl -

Exception at n = 0:

Y1(0) = hi, ¢1(0) = hyy,
as if a BDF'1 step were taken from y_; to yo with hg = hy.

8



We will also need some other scalars:

) = ffn) )=
B di(n) i i(n B
ﬁj(n) — wl(n_l)"'wj—l(n—l [51(71)—1]

|
3im) = 'S 1 fln) In(n) = 0,(n) = 1/h]

Interpolating polynomial.

Given yn, Yn—1, - - - Yn_k, there is an interpolating poly-
nomial wy,(t) of degree < k that interpolates this data
set. In terms of classical divided differences, this is

Wnlt) = Yn + (t = t0)[Yn, Yn—1] +
(t —ta)(t — toe1)|Yn> Yn—1, Yn—2] + - ..
(t — tn)(t — tn—l) T (t — tn—k—}—l)[yna IR 7yn—/c}

For 1 =0,...,k, the j-th term above is

wn,j(t) = {H%;éa — tn—f)] [yn; Yn—1, e ayn—j]
= (250t = tu-0)] 65(n)/ [T ytbeln)

= Ci(t)g(n),  C5(t) =T (;;f%f)
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4. Interpolating to Output Times

Suppose the user requests the solution at t = ¢,,;, which
was just reached: ¢, < tour < t, OF tp_1 > tow > t,,.
IDA returns to the user two vectors

Yout = w(tout) ’ y;ut = w/<tout> )
where w(t) = wy(t).
Use the ¢;(n) and 9;(n) to compute

w(tout) - %:Cj(tout>¢j(n> )

k
w,<tout> — %le'(tmw)qu(n)
The interpolant is continuous, but not C'*.

Implementation:
Y Yo, ¥ <0
C=1, D=0, v=(tow —ta) /1
For 9 =1,...k:

D = Dy+Cfy;, C=Cy

Y = (tout*tn+¢j)/¢j+1
y < y+Coi(n), v <y + Do;(n)

11



5. The Newton Iteration Algorithm

Recall we are solving G(y,,) = 0 for y,,, where
G(y) = F(tn, y, ay + ),
with o = —ag/h, and § = y;(o) — QYp(0)-

Newton iteration is JAY = —G(Yp (), where J is some
approximation to G'(y) = 0F /0y + a0F /dy'.

IDA does two flavors of Newton iteration:

(a) Modified Newton in direct cases:
J fixed (usually out of date);
linear residual =~ 0 via LU method:
relaxation w.rt. & = « in J.

(b) Inexact Newton in Krylov case:
J current, using matrix-free product Jv;
precondition on left™ with P ~ J:
linear residual nonzero but controlled.

*Note: Left preconditioning is required to make norm
|linear residual|| meaningful; || JAy + G| is meaningless
1 general, since the weights are weights for .

In any case, the initial guess is y,q) = Wn-1(ty), where
wy_1 represents the data at end of step n — 1.

If a re-evaluation of J or P is done during step n, it is
done at (£n, Yn(0), Yn(o)), to maximize its effectiveness.

12



Jacobian/Preconditioner strategies.

The Newton matrix J (direct cases) and preconditioner
P ~ J (Krylov case) are usually expensive.

Balance between evaluation /preprocessing the matrix fre-
quently (high cost) and infrequently (slow convergence).

We update J or P if:
* starting the problem (n = 1)

“a/a < 3/50r a/a>5/3, where a = O“last update
* convergence failed non-fatally with old J or P

On an update of J or P, Jacobian data is always re-
evaluated from scratch. Two-level update strategy of

PVODE would require saving both 0F/dy and OF /0y’ .

13



Convergence test.

We want to insure that the iteration error ¥, — Yn(m) is
small relative to y itself, specifically:

|iteration error in || < 0.33 .

(Contrast PVODE’s nonlinear test constant, which is pro-
portional to the local error test constant.)

For this, estimate linear convergence rate constant R:
Corrections are 0., = Yn(m) — Yn(m—1) for m =1,2,. ..
If m>1, we set

= (|8l 1627

We stop the Newton iteration if & > 0.9.

Now Suppose R satisfies ||dp.1|] < R|[d¢]| for all £ > m.
Then

Yn = Yn(m) T Om+1 + Omy2 + ... implies
= wll = 1| S al< o

< £l = () Ionl

So when m > 1 and R < 0.9, weset S = R/(1 — R).
Then for any m, the convergence test is

S0l < 0.33,

but for m = 1 this uses an old value for S.

14



If convergence is superlinear (possible in Newton-Krylov
case), then the error in ¥y, is even smaller.

We Initialize S to 20, reset S = 20 each time J or P is
updated, and reset S = 100 on a step with o # &. This
encourages recalculation of R on a major change in the
Newton matrix.

If m = 1, we make an additional test, and stop the New-
ton iteration if ||8;|| < 107* - 0.33, because such a d; is
probably just noise and so not appropriate for use in R.

We allow at most 4 Newton iterations.
If convergence fails with J or P current, cut h <— h/4.

If convergence fails 10 times, give up.

Krylov convergence test.
We control the preconditioned linear residual to be small
compared to the allowed error in the Newton iteration:

1P~ (Jz + G)]] <0.05-0.33 .

(Because the generic SPGMR solver uses Ly norms of
scaled vectors, it is given a tolerance of v/N - 0.05 - 0.33
in order to obtain a WRMS-norm test.)
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6. The Local Error Test

The BDF can be written in the alternate form, expressing
h,y! as a series in the ¢;:

hatf, = 3 ()5 (n) = [0 — 0'(m)} ()

where

The true solution y(t) (if sufficiently smooth) satisfies
hot (tn) = jgl a;(n)p;(n) ,

in which the ¢; are evaluated on the solution y(¢).
In this series, ¢j(n) is O(h?) as the stepsizes all go to
zero, bounded by h.

The Local Truncation Error of the BDF is the remainder
in the formula when evaluated on a smooth solution.

So the LTE 1s
LTE, = [ar1(n) + a5 — a°(n)]ori1(n) + O(R*2) .

This has been shown to be asymptotically correct for fixed
stepsizes and for somewhat more general conditions.

Using the interpolatory conditions of the predictor and
corrector polynomials, one can also show that

¢k+1(n> — An = Yn — Yn(0) -
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Thus the estimated LTE is
ELTE, = [ar1(n) + a5 — a’(n)]A, .

IDA requires that ||[ELTE,| < 1. But it also requires
that the interpolation error in wy(t) is bounded by 1 in
WRMS-norm for ¢ in the last step interval [t,_1,¢,]. The
principal term of this interpolation error can be bounded
by

a1 (1) | Prr1(n)]] -

So the Local Error Test in [DA 1s:

max{ags1 (), |arii(n) +as — o’ () A < 1.

[ Note that this coefficient involves Ay, hp1, ... Ry
I.e. BDFE is treated as a (k + 1)-step method.
BDF1 = Backward Euler is treated as a 2-step method.]

Optional altered Local Error Test: If y has algebraic com-
ponents v that are coupled to the other components wu,
1t 18 sometimes best to control the local error only in w.

The ODE-based LTE theory is less likely to apply to v.

For this option, use must input bit vector 1D identifying
uw vs v. IDA then forms a masked copy of the reciprocal
weight vector w™! for use in the Local Error Test.
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7. Step and Order Selection

Special initial phase: For the first few steps, until
* the local error test fails, or
* the order is reduced, or
* k =5 (the maximum order),

we raise the order by 1 and double the step size.

IDA’s step/order selection uses Local Truncation Error
estimates that apply in the fixed-step case, even though
the last k£ + 1 step sizes may not have been constant.

At fixed h, the leading term of the LTE at order & is

1
pRtL (k+1)
k+1 In

To estimate this, we use another set of constants,

B ) o
0]( ) wl(n>¢j(n) [ 1( ) 1]7

so that
oj(n)ps(n) = h(5 = Dllyns - Ynyl = By /5 .

Actual order choice is not based on maximizing A, but on
requiring (roughly) that the ||h7y")|| be monotonically
decreasing for j near k. Estimate hJy\) as joi(n)p;(n).
This helps indirectly with BDF stability limit problem.

18



(a) Actions before passing the Local Error Test.
Set order k test quantities:

ELTE: = Ep = op1(n)]|@r41(n)|
= op41(n)[|An|
est. |[pEH ST = T = (B + 1) By, .

n

Set order k& — 1 test quantities (if £ > 1):

ELTE 1 = Ep1 = ox(n)|¢x(n)]]
= or(n)llor(n) + A

est.||[hEyM|| = Ty = kEp_y .
Set order k — 2 test quantities (if £ > 2):

ELTE; 2 = Bz = op1(n)llgr1(n)]|

= op-1(n)||[¢r_1(n) + ¢r(n) + A
est.||RELyP V)| = Ty = (k — 1)Ej_s .

Set the new order to:

E=Fk—1if k>2& maX(Tk~1,Tk_2) <71 or
k=2& T < Ty/2

k' =k otherwise .
Then do the Local Error Test.
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Actions if Local Error Test fails:
e Restore {¢;}f and {1;}} to step n — 1 values
o Sct k =k’

e Set » = h'/h according to asymptotic h*T! behavior
of LTE, but use fixed-step LTE estimates, with safety

factors: 1
T = O9/(2Ek)m ;

adjusted so that .25 <r < .9
e On second failure, set r = .25
e On third and later failures, set £k =1, = .25
e Set h« h' =rh
e Retry step at order k, step size h

e Give up after 10 error test failures
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(b) Actions after passing the Local Error Test.

No further action if: k' = k—1, or k = 5, or k was raised
in previous step. If last £+ 1 steps were at constant order
k < 5 and step size h, consider order k 4 1.

Set order k + 1 test quantities:
est.|[REF 2y = Thpy = || A, — Ay

n

ELTEk+1 — Ek+1 — Tk+1/(k + 2) .

Case k =1: Set k « 21t Ty, < T1/2.

Case k > 1:
Set k &k —1if Ty < min{Ty, Tri1} ;
Else set k < k+ 11t Tp 1 < Ty ;
Else leave k unchanged (Ty_1 > Ty < Ti11) .

In any case, set tentative step ratio
r=h'/h=1/(2E)
using new k£ and corresponding estimated LTE E}.
To increase h, we must be able to double 1t:
If r > 2 take b = 2h
If r <1, adjust to make .5 <r <.9 set h' =rh ;
fl<r<2 seth=h.
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8. Inequality Constraints

IDA user can impose constraints on i componentwise, by
way of an input vector with 5 choices:

yi>0, inO, yi_<__()) yi<07 yiunconstrained.

Following the Newton iteration, if otherwise successful,
we test resulting y = ¥, for satisfaction of constraints.

Test returns mask vector M (M* = 0if OK, 1 if not OK).

If there are any failures, compute a constraint violation
vector V', such that §* = y' — V" would pass the constraint
test, but just barely. ( V' = 0 where M* = 0.)

E.g., if constraint is y* > 0, but y* < 0, then V' = ¢/*.

If constraint is * > 0, but y* < 0, then V* = y* — 0.2w",
where w is the vector of error weights,

w' = rtol |y'| + atol” .

V' 1s set similarly for constraints y* <0, y* <0 .

Since the Newton convergence test is
|error in || < 0.33,
we accept y =y — V instead of y if ||V < 0.33.
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Actions if ||V]| > 0.33:

We declare a convergence failure of the Newton iferation.
and cut the step size. Rather than cut by an arbitrary
factor like 1/4, we estimate a new h', based on the failure:

If constraint is y* > 0, but y' < 0 (and 3 _; > 0), then
a linear approximation of y'(¢) crosses zero at t,_1 + h/,
given by yi i

Wb =l =i y £,

Y1 — Y i w
tn—\ \‘ :

The same is true if the constraint is y* < 0, but y* > 0.

So a new step size valid for all components is given by
K/h=r=mn{r': M'=1}.

To cover the strict inequality case, we apply a safety factor

of 0.9 to r.

If r = 0, because some y,_; = 0 but %' has the wrong
sign, we can only hope that some small value of A" will
produce a valid ¢*. Therefore, we restrict 7 to 7 > 0.1.

In any case, we set h <— rh, and try the step again. As
before, give up after 10 such failures.
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Inequality constraints in 1C Calculation:

The linesearch process finds a corrected value of the vector
r (= a mix of y and ¥y components) between current z

and r + Ax.

Before setting A by the unconstrained algorithm, we test
the y components of x 4+ Ax for satisfaction of the con-
straints. If not satisfied, we compute Ay so that z+ AgAz
will (just barely) satisfy the constraints.

Then restrict the subsequent A choice to 0 < A < Ag.
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